
Ariel A. Muñoz Laboratorio de Dendrocronología y Estudios Ambientales Instituto de Geografía Pontificia Universidad Católica de Valparaíso Centro del Clima y la Resiliencia (CR2)

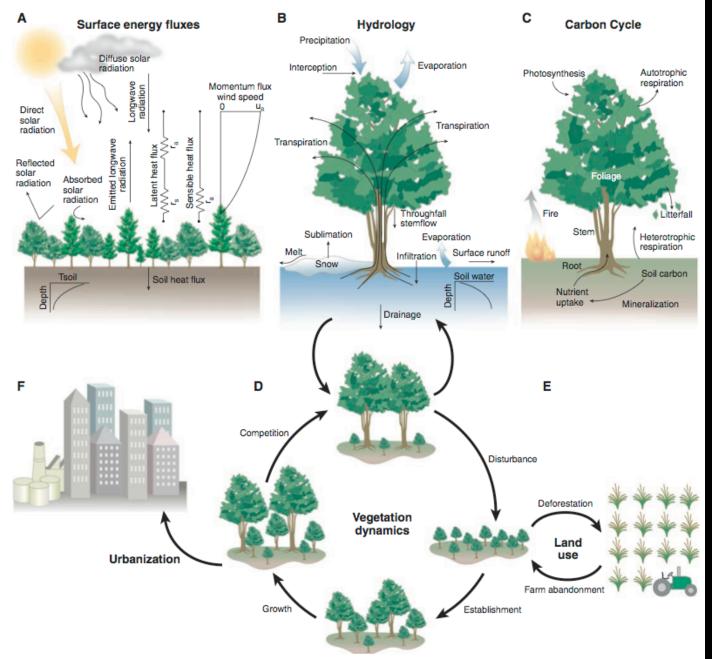
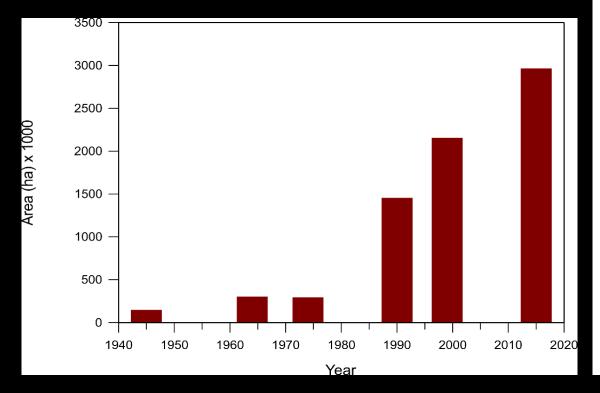
Antecedentes

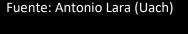
Pregunta: Es adecuado ingresar todos los proyectos forestales al SEIA?

- Hay 3 millones de hectáreas de plantaciones forestales
- No existe una regulación a la extensión de las talas rasas en Chile. Este tipo de regulación existe en la mayoría de los países del mundo debido a los grandes efectos que generan las cosechas forestales en grandes superficies sobre la erosión, la calidad y la disponibilidad de agua, así como sobre la biodiversidad y la conectividad a nivel de paisaje.
- No hay evidencia que indique que las plantaciones generan riqueza en los territorios (Bopp et al 2020).
- Efecto sobre los recursos hídricos ***

- Existe mucha evidencia sobre el efecto de las plantaciones en la disponibilidad de agua.

Tipo de cobertura	Pp° anual	Evapotranspiración	Referencias
Roble-Olivillo	3100	398	Echeverria et al. 2007
Pinus radiata	1688	936	Oyarzún y Huber 1999
Eucalyptus globulus	1688	910	Oyarzún y Huber 1999
Eucalyptus nitens	1089	861	Huber et al. 1998


Fig. 2. The current generation of climate models treats the biosphere and atmosphere as a coupled system. Land surface parameterizations represent the biogeophysics, biogeochemistry, and biogeography of terrestrial ecosystems. (A) Surface energy fluxes and (B) the hydrologic cycle. These

are the core biogeophysical processes. Many models also include (C) the carbon cycle and (D) vegetation dynamics so that plant ecosystems respond to climate change. Some models also include (E) land use and (F) urbanization to represent human alteration of the biosphere.

 Pérdida de Bosques Nativos 1973-2011
 782.000 ha (19% del área en 1973)

 Expansión de Plantaciones Forestales de Pinos y Eucaliptos
 240.000 ha a 3 millones de ha

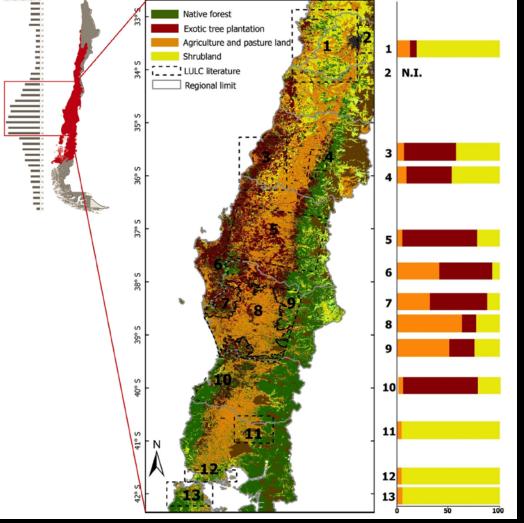
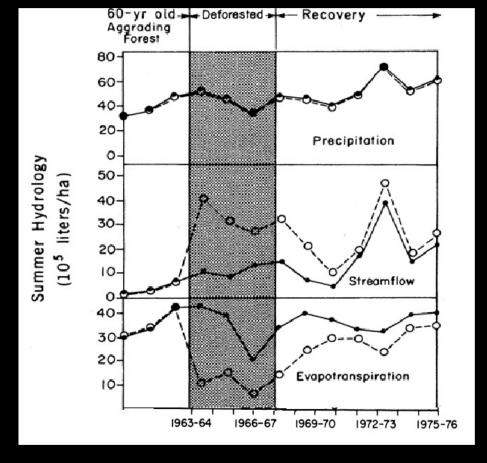
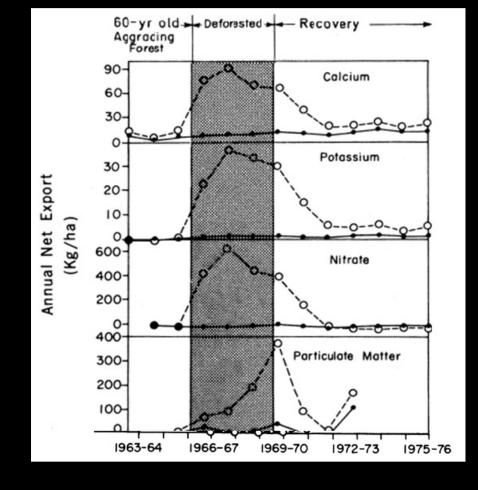




Fig. 1. Effects of deforestation on hydrology, biogeochemistry, and aboveground net production in an experimentally deforested northern hardwood forest ecosystem (o---o,W-2) are compared with a forested reference ecosystem (o---o,W-6). A 60-year-old forest (W-

Likens et al. 1978

Water Air Soil Pollut (2007) 179:341-350 DOI 10.1007/s11270-006-9237-4

Effects of Land Use Conversion from Native Forests to Exotic Plantations on Nitrogen and Phosphorus Retention in Catchments of Southern Chile

Carlos Oyarzun • Claudia Aracena • Patricio Rutherford • Roberto Godoy • An Deschrijver

Erosion proxies in an exotic tree plantation question the appropriate land use in Central Chile

Callum C. Banfield^{a,c,a}, Andreas C. Braun^a, Ricardo Barra^b, Alejandra Castillo^d, Joachim Vogt^a

- a Karlsruhe Institute of Technology, Institute of Regional Science, Karlsruhe, Germany
- b Universidad de Concepción, Faculty of Environmental Sciences & EULA Chile Centre, Concepción, Chile
- ⁶ Georg-August-University Goettingen, Dept. Soil Science of Temperate Ecosystems, Goettingen, Germany
 ^d Universidad Austral de Chik, Instituto de Ciencias Químicas, Facultad de Ciencias, Valdivia, Chile

Original research article

Assessing the impact of plantation forestry on plant biodiversity

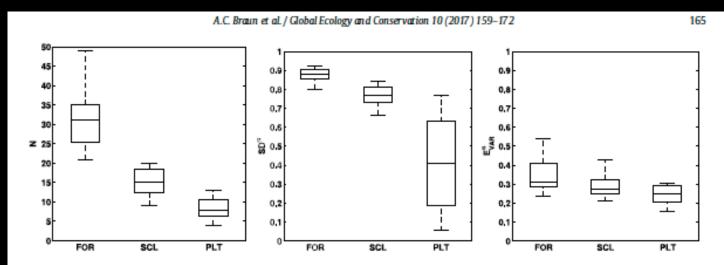
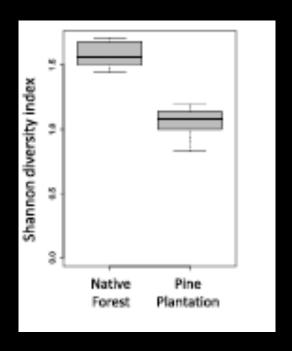
Andreas Ch. Braun^{a,*}, Danny Troeger^a, Rafael Garcia^b, Mauricio Aguayo^c, Ricardo Barra^d, Joachim Vogt^a

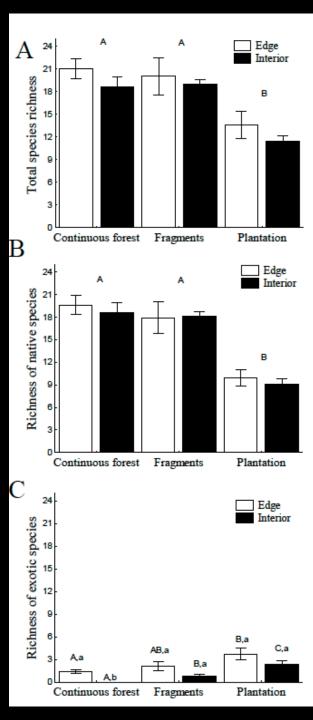
Institute of Regional Sciene (IfR), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

OPEN

Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations

Camila Cifuentes-Croquevielle^{1,2,6 ™}, Daniel E. Stanton³ & Juan J. Armesto^{1,2,4,5,7}

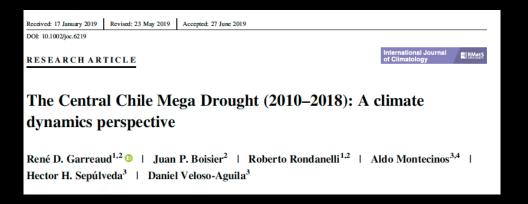




Fig. 2. Boxplots of the biodiversity data of Central Chile, Left: Species richness N, Centre: Simpson Diversity SD^{α} , Right: Smith–Wilson Evenness E^{α}_{VAR} . FOR: forest, SCL: scrubland, PLT: plantation.

^b Facultad de Ciencias Forestales (Laboratorio de Invasiones Biologicas - LIB), Universidad de Concepcion (UdeC), Victoria 631, Concepcion, Chile

Centro de Ciencias Ambientales (EULA), Universidad de Concepcion (UdeC), Casilla 160-C, Concepcion, Chile

^d Facultad de Ciencias Ambientales, Universidad de Concepcion (UdeC), Casilla 160-C, Concepcion, Chile



BOSQUE 41(2): 125-136, 2020 DOI: 10.4067/S0717-92002020000200125

Native and exotic plant species diversity in forest fragments and forestry plantations of a coastal landscape of central Chile

Diversidad de plantas nativas y exóticas en fragmentos de bosque y plantaciones forestales en un paisaje costero de Chile central

Pablo I Becerra a*, Javier A Simonetti b

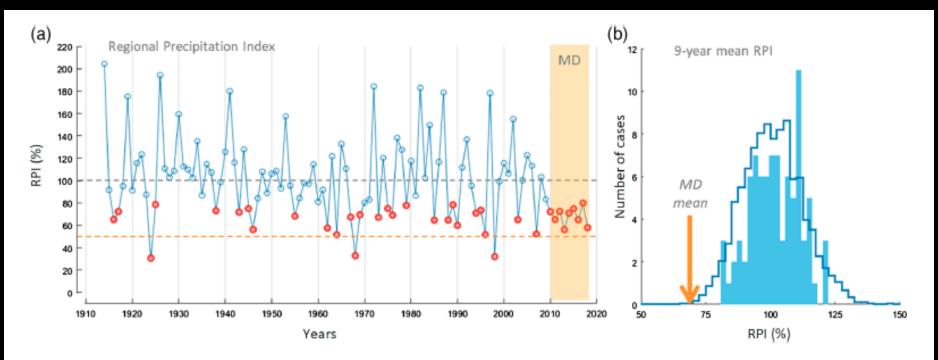
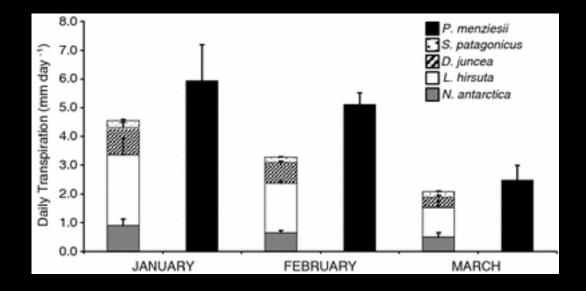
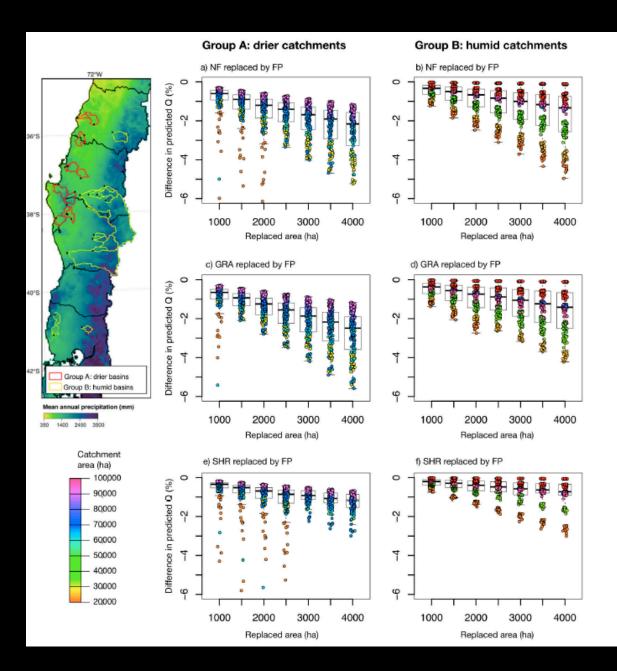



FIGURE 2 (a) Annual series of Central Chile regional precipitation index (RPI). Droughts, defined as years with RPI < 80%, are identified by the red circles. (b) Histogram of 9-year average of RPI for the period 1915–2009. The light blue bars show the observed frequency, considering a 9-year sliding window throughout the 1915–2009 record. The blue thick line is the distribution obtained from 5,000 randomly selected 9 years from the historical period. The orange arrow indicates the RPI averaged during the MD (2010–2018) [Colour figure can be viewed at wileyonlinelibrary.com]

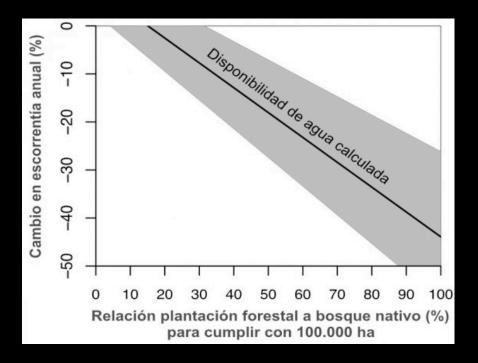

Trees (2009) 23:415-427 DOI 10.1007/s00468-008-0291-y

ORIGINAL PAPER

Water flux and canopy conductance of natural versus planted forests in Patagonia, South America

María Elena Fernández · Javier Gyenge · Tomás Schlichter

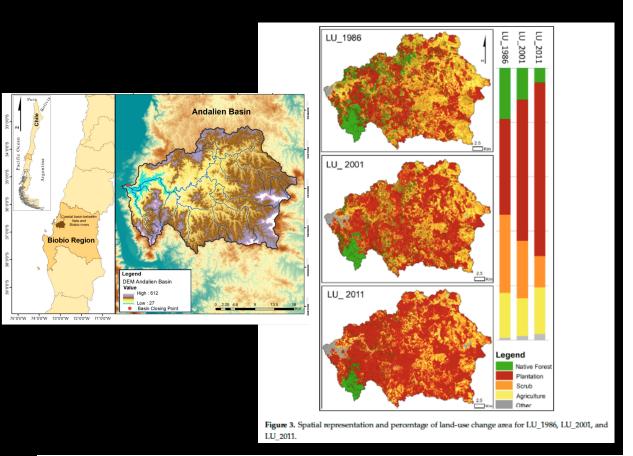
Fig. 2 Stand-based daily transpiration (mm day⁻¹) estimated for a Pseudotsuga menziesii plantation, and Lomatia hirsuta, Schinus patagonicus, Nothofagus antarctica and Diostea juncea trees or shrubs growing in El Foyel River basin, Río Negro, Argentina. Each bar corresponds to the mean and standard deviation of 7–10 days in each month



Article

The Impacts of Native Forests and Forest Plantations on Water Supply in Chile

Camila Alvarez-Garreton ^{1,2,*}, Antonio Lara ^{1,2,3}, Juan Pablo Boisier ^{2,4} and Mauricio Galleguillos ^{2,5}



Artic

Effect of Land Use/Cover Change on the Hydrological Response of a Southern Center Basin of Chile

Rebeca Martínez-Retureta ^{1,2,*}, Mauricio Aguayo ^{1,2,*}, Alejandra Stehr ^{1,2}, Sabine Sauvage ³, Cristian Echeverría ⁴ and José-Miguel Sánchez-Pérez ³

of the hydrological cycle (evapotranspiration (ET), percolation (PERC), surface flow (SURQ), lateral flow (LAT_Q), groundwater (GW_Q), and water yield (WYLD)), for the LU_1986 and LU_2011 scenarios.

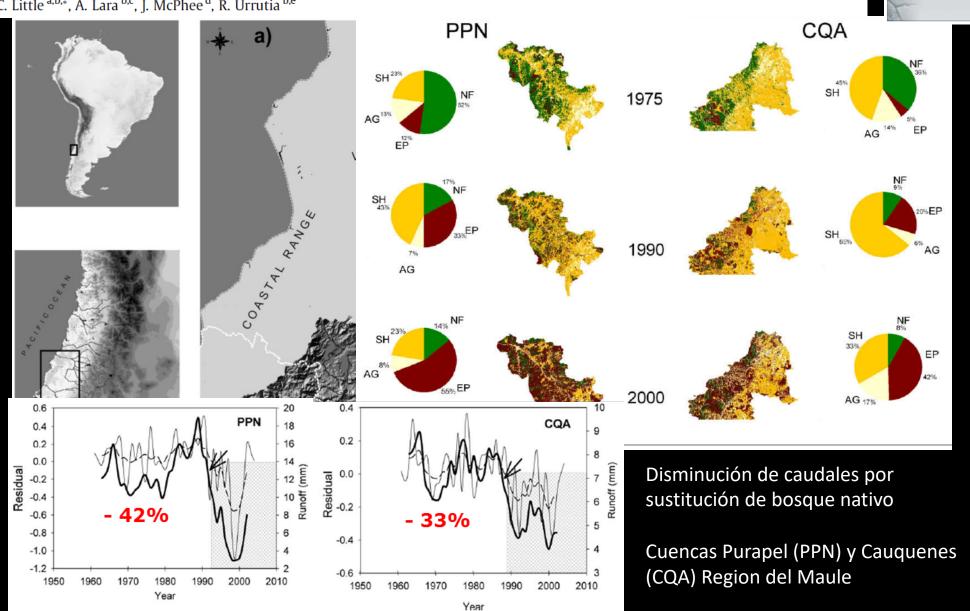
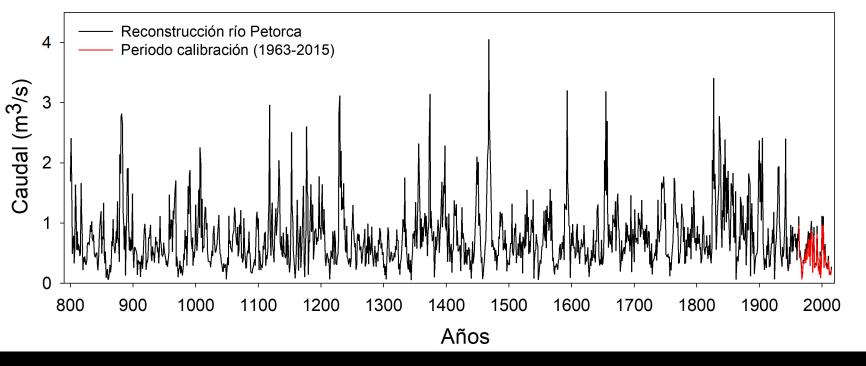



Figure 7. Monthly averages and relative changes of (a) ET, (b) PERC, (c) SURQ, (d) LAT_Q, (e) GW_Q and (f) WYLD for scenarios LU_1986 vs. LU_2011.

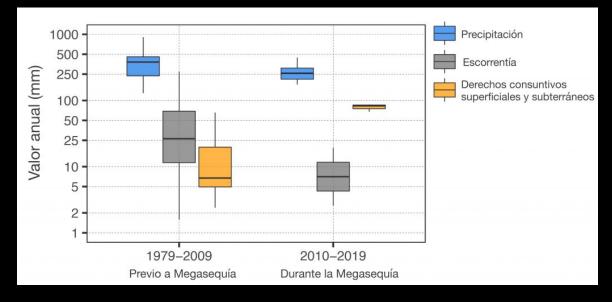

Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile

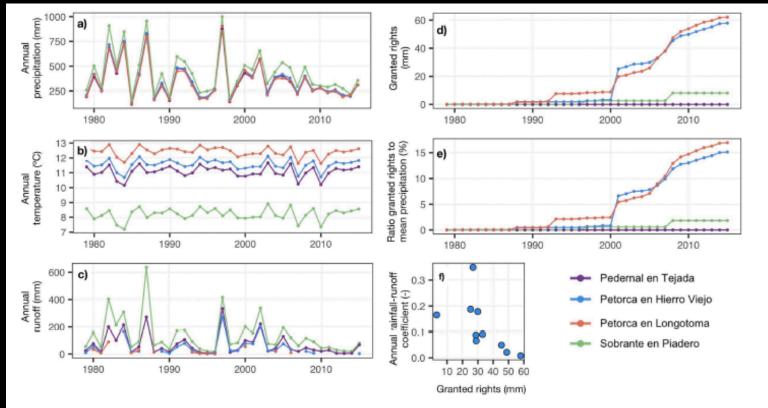
C. Little a,b,*, A. Lara b,c, J. McPhee d, R. Urrutia b,e

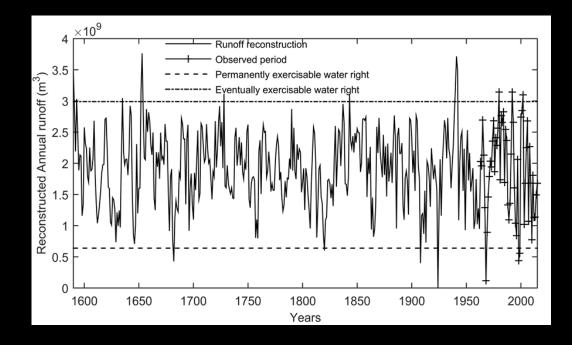
HYDROLOGY

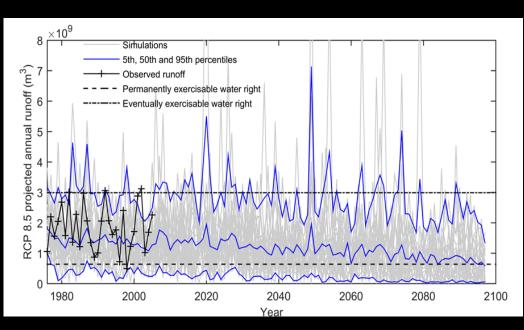
MON Control of the state of the sta The state of the s

ANUAL		QUINQUENIAL			DECADAL						
Bajos	caudales	Altos	caudales	Bajos caudales		Altos caudales		Bajos caudales		Altos caudales	
Año	Q _{medio} reconstruido [m³/s]	Año	Q _{medio} reconstruido [m³/s]	Periodo	Q _{medio} reconstruido [m³/s]						
1344	0.0575	1836	4.0499	857-861	0.1219	1466-1470	2.6681	856-865	0.2043	1463-1472	1.9753
1547	0.0614	882	3.406	2011-2015	0.2068	879-883	2.4387	971-980	0.2299	1229-1238	1.724
1863	0.0639	1229	3.1976	976-980	0.2085	1229-1233	2.1926	1041-1050	0.2537	1836-1845	1.665
860	0.0644	1118	3.1801	1088-1092	0.2088	1653-1657	2.1828	2006-2015	0.2716	875-884	1.655
861	0.0644	1230	3.1381	1300-1304	0.2126	1825-1829	2.1049	1570-1579	0.2917	1825-1834	1.5798
1304	0.068	1374	3.1129	1341-1345	0.2313	1834-1838	2.0941	1086-1095	0.3085	1897-1906	1.5509
1214	0.0691	1655	2.9603	1547-1551	0.2378	1898-1902	1.8331	907-916	0.3095	1652-1661	1.5224
1924	0.0697	1593	2.8455	1046-1050	0.238	1591-1595	1.7578	1337-1346	0.3237	1588-1597	1.3674
1049	0.0702	1827	2.8152	1456-1460	0.2432	1372-1376	1.7387	1622-1631	0.3545	1392-1401	1.3477
1458	0.0726	1468	2.7716	1572-1576	0.245	1447-1451	1.6614	1297-1306	0.3611	1741-1750	1.3357

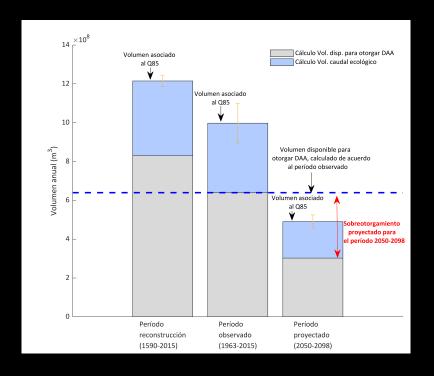





Article


Water Crisis in Petorca Basin, Chile: the Combined Effects of a Mega-Drought and Water Management

Ariel A. Muñoz ^{1,2,*}, Karin Klock-Barría ^{1,2}, Camila Alvarez-Garreton ^{2,3}, Isabella Aguilera-Betti ^{1,4}, Álvaro González-Reyes ⁵, José A. Lastra ⁶, Roberto O. Chávez ⁶, Pilar Barría⁷, Duncan Christie ^{2,3,8}, Moises Rojas-Badilla ^{1,8} and Carlos LeQuesne^{3,8}



Barría, P, et al. 2019. Anthropocene and streamflow: Long-term perspective of streamflow variability and water rights. *Elem Sci Anth*, 7: 2. DOI: https://doi.org/10.1525/elementa.340

RESEARCH ARTICLE

Anthropocene and streamflow: Long-term perspective of streamflow variability and water rights

Pilar Barría*, Maisa Rojast, Pilar Moraga*, Ariel Muñoz, Deniz Bozkurt, and Camila Alvarez-Garreton,

Paisajes Altamente Homogéneos Dominados por Plantaciones

Monoproductores **Alto riesgo de incendios**Baja biodiversidad

Disminución de caudales

Fuente: Antonio Lara (Uach)

RESEARCH ARTICLE

Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires

David M. J. S. Bowman , Andrés Moreira-Muñoz, Crystal A. Kolden, Roberto O. Chávez, Ariel A. Muñoz, Fernanda Salinas, Álvaro González-Reyes, Ronald Rocco, Francisco de la Barrera, Grant J. Williamson, Nicolás Borchers, Luis A. Cifuentes, John T. Abatzoglou, Fay H. Johnston

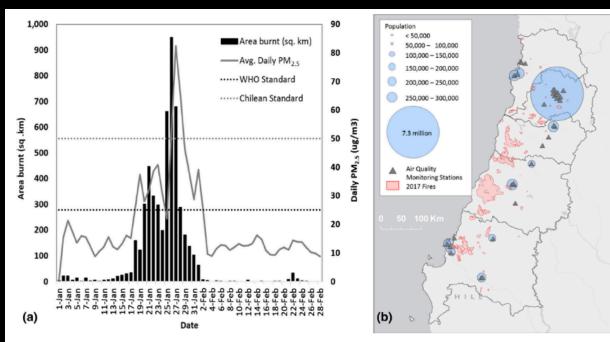
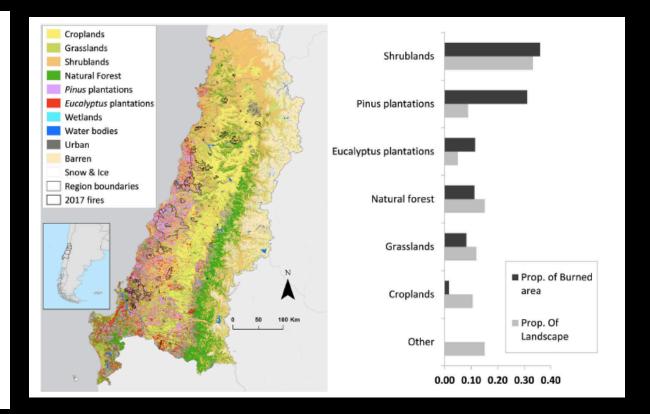
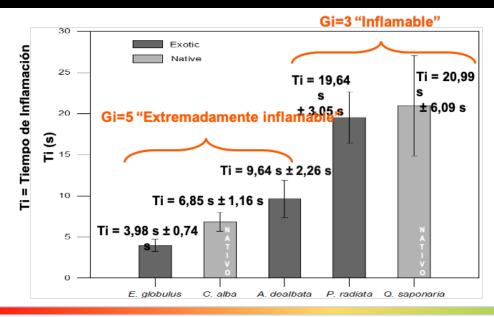



Fig. 7 Air quality impacts from the 2017 fire event in central Chile both temporally (a) and spatially (b). Aggregated across the five regions of central Chile, residents were exposed to poor air quality exceeding the WHO (2017) limit of $25 \mu g/m^3$ fine particulate matter (PM_{2.5}) for a total of 15 days between 18 January and 2 February (a), corresponding with the peak of fire consumption (i.e., area burnt) across the region but also resulting in delayed atmospheric clearing after the peak burning period. Over 9.5 million residents were impacted across the fire regions (b), most of them in the metropolitan capital region surrounding the capital city of Santiago



CSIRO PUBLISHING

International Journal of Wildland Fire 2020, 29, 675–685 https://doi.org/10.1071/WF19086

Thermo- and physicochemical properties of native and exotic forest species of Valparaíso, Chile, as essential information for fire risk management

Fabián Guerrero^{A,E}, Mario Toledo^A, Nicolás Ripoll^D ^A, Lorena Espinoza^A, Rodrigo Morales^A, Ariel Muñoz^B, Lautaro Taborga^C and Yulian Carrasco^D

Gi = Grado de inflamabilidad

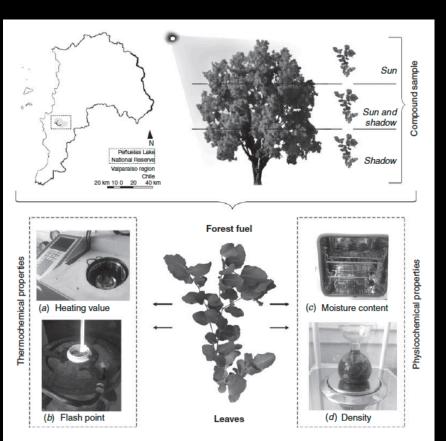


Fig. 4. Experimental design used for the thermochemical and physicochemical characterisation of leaf samples from the species *Pinus radiata*, *Eucalyptus globulus*, *Acacia dealbata*, *Quillaja saponaria* and *Cryptocarya alba*.

Estado del clima y eventos extremos del año 2019

Déficit de lluvias de un 70% a 80%, entre Coquimbo y el Maule, han deteriorado severamente la vegetación y disminuido los volúmenes en embalses naturales y artificiales. Han ocurrido problemas en el suministro de agua potable rural y varias regiones han declarado emergencia agrícola. Las sequia extrema del 2019 ha ocurrido pese a las condiciones de El Niño moderado, pero son consistentes con la superposición de los efectos del cambio climático y el calentamiento del océano Pacifico suroccidental

TORNADOS zona centro sur Se reportaron los días 30 y 31 de mayo. Los casos mejor documentados son los de Los Ángeles (día 30,8 PM) y Talcahuano-Concepción (día 31,2 PM) causando daños en infraestructura, lesionados y una persona fallecida

mayo

Agosto

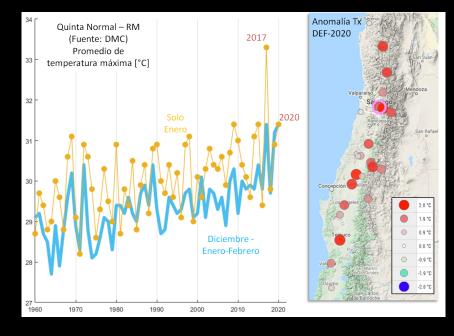
Un marcado y repentino calentamiento de la estratósfera debilitó el vórtice polar a fines de agosto. Durante la primavera esto se propagó hacia la troposfera, llevando el modo anular del sur (SAM) a su fase negativa, causando, entre otras cosas, precipitaciones copiosas en la Patagonia chilena

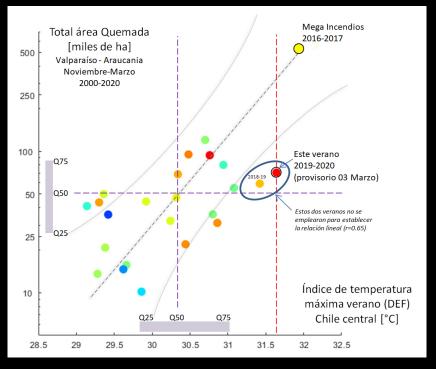
enero febrero

Entre fines de enero y mediados de febrero la zona altiplánica de Chile (y también Perú y Bolivia) recibió una de sus temporadas mas lluviosas, con tormentas que se extendieron hasta la pampa y causaron perd das de vidas humanas y graves daños en la infraestructura

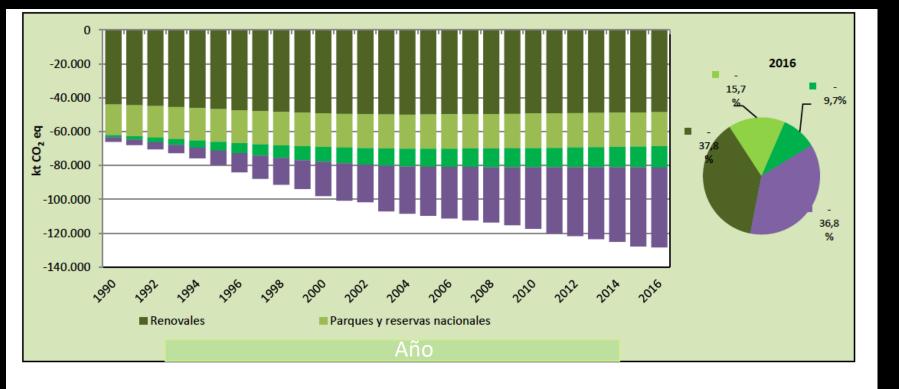
noviembre - diciembre

Secuencias de varios días sobre temperatura en los valles interiores de Chile central han producido un nuevo record para noviembre y diciembre. Lamentablemente, muchas de estas olas de calor han venido acompañadas de incendios forestales de consideración



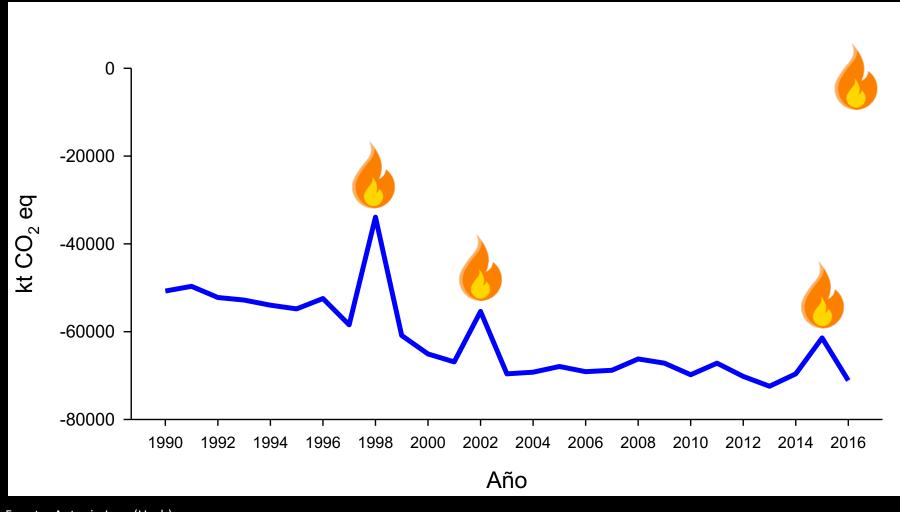

febrero

Una ola de calor extrema afectó a la zona sur de Chile la primera semana de febrero, con temperaturas record (o cercanas al record) desde el Maule hasta Punta Arenas. El día 4 se inicio un incendio forestal en la zona de Cochrane arrasando mas de 15 mil hectáreas


> Investigador responsable René Garreaud rgarreau@dgf.uchile.cl Línea "Agua y extremos" www.cr2.cl

Capturas de Carbono por los Bosques Nativos y Plantaciones 1990 - 2016

Fuente: Antonio Lara (Uach)

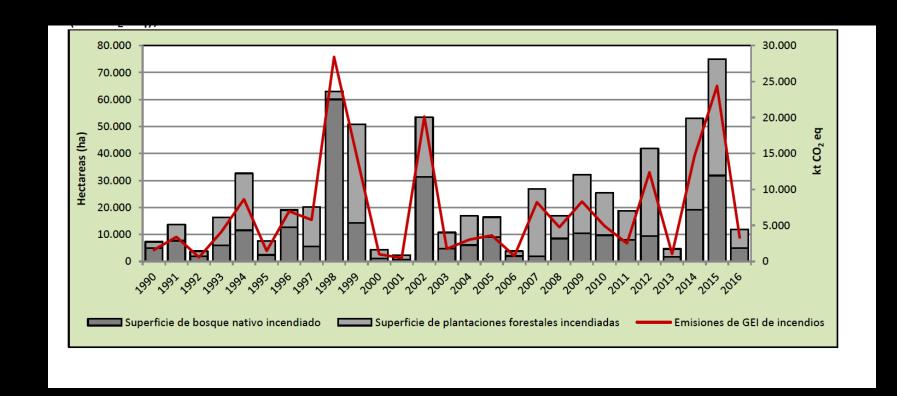

BOSQUES NATIVOS (63%)

- Renovales
- Bosques en Parques y Reservas Nacionales
- Bosques bajo Manejo y Recuperación

PLANTACIONES FORESTALES (37%)

- Pino y Eucalipto en rotaciones cortas (talas rasas cada 12 18 años)
- Las capturas de Carbono han aumentado debido a la expansión de plantaciones hasta 2012 y el efecto retardado del aumento de biomasa de estas nuevas plantaciones

Capturas Netas de Carbono por los Bosques Nativos 1990-2016



Años de Grandes Áreas Quemadas por Incendios

Fuente: Antonio Lara (Uach)

Pérdidas de Carbono (emisiones) debido a incendios 1990 – 2016 (kt CO₂ eq)

Chile's forest fires partly due to poor planning, say fire chiefs

Monoculture plantations and too few fire breaks contributed to 11 deaths and devastation of 2,000 sq miles

People amid the remains of their homes after a forest fire in Santa Olga, 240 kilometres south of Santia
 Photograph, Pable Vera Licograph (ASDICatty Import)

Área Quemada

Emisiones (CO₂ e)

Incendios de 2017:

- 580.000 ha totales
- 370.000 ha de plantaciones y bosques nativos
- 106 millones de ton de CO₂ eq

Fuente: Antonio Lara (Uach)

Compromisos de integración

BOSQUES

Transcendental para CN al 2050 que debe ser hecho con acciones sustentables considerando adaptación , las comunidades locales y el cuidado del recursos hídrico. Sólo lo podemos abordar con dialogo y compromiso real. MESA FORESTAL y CIENCIA

Forestación Chile se compromete a forestar 100.000 hectáreas, en su mayoría con especies nativas Chile se compromete a forestar 200.000 hectáreas, de las cuales al menos 100.000 hectáreas en suelos sin vegetación y de aptitud forestal. Propuesta NDC PAC Nueva NDC Se mantiene compromiso se especifican requerimientos: Realizarse en suelos sin vegetación y de aptitud forestal. Promover uso especies nativas	
forestar 100.000 hectáreas, de las cuales hectáreas, en su mayoría con especies nativas forestar 100.000 hectáreas, de las cuales al menos 100.000 hectáreas corresponden a cubierta forestal nativas especifican requerimientos: Realizarse en suelos sin vegetación y de aptitud forestal. Promover uso especies nativas	nculo con ODS
(capturas GEI del orden de 1,2 MtCO2eq). 70.000 hectáreas de especies nativas, al 2030. (capturas de 3,0 a 3,4 MtCO _{2eq} anuales). • Favorecer Áreas que ayuden a protección de suelos, humedales, cabeceras de cuenca (especies más tolerantes, menor densidad, especies mixtas). • Reporte bianual de CONAF al Congreso y CMS. NO CONDICIONADO NO CONDICIONADO	13 scient

BOSQU	ES		/	Actualizado
Variable	NDC 2015	Propuesta NDC PAC	Nueva NDC	Vínculo con ODS
Degradación e Incendios	Sin meta.	Reducir las emisiones del sector forestal por degradación y deforestación del bosque nativo en un 25% al 2030, considerando las emisiones promedio entre el periodo 2001- 2013	se especifican con que acciones se realizará: • Gestión para prevención incendios.	13 room team

ACTUALISEACTON NOC 2020

Restauración a escala de paisajes

Variable	NDC 2015	Propuesta NDC PAC	Nueva NDC	Vínculo con ODS
Incorporación al proceso restauración	Sin meta.	Sin meta.	Al 2021: Plan Nacional de Restauración a Escala de Paisajes. Al 2030: incorporación de 1.000.000 hectáreas al proceso de restauración de paisajes, priorizando en aquellos con mayor vulnerabilidad social, económica y ambiental.	13 POST II CLIMA 15 POST II CLIMA 16 POST II CLIMA 16 POST II CLIMA 17 POST II CLIMA 18 POST II CLIMA 18 POST II CLIMA 18 POST II CLIMA 19 POST II CLIMA 19 POST II CLIMA 10 POST II CLIMA 10 POST II CLIMA 10 POST II CLIMA 10 POST II CLIMA 11 POST II C

La naturaleza juega un rol clave en la provisión de bienes y servicios a las personas y su calidad de vida (alimentos, agua, recreación), es clave recuperar nuestra naturaleza aumentando la resiliencia de los territorios y comunidades frente al cambio climático.

Regiones	Superficie estimativa (área de influencia)
Coquimbo	40.378 ha
Valparaíso	141.342 ha
Región Metropolitana	85.453 ha
O'Higgins	208.352 ha
Maule	130.174 ha
Ñuble	56.551 ha
Biobio	192.549 ha
Araucanía	316.597 ha
TOTAL	1.171.396 ha